QUANTUM ION DEPENDENT THEORY FOR TEMPERATURE VARIATION OF REFRACTIVE INDICES FOR MIXED BINARY CRYSTALS

Dr. Yogesh Kumar Vashistha, Lecturer in physics M.A.J. Govt. (P.G.) College, Deeg (Bharatpur), Rajasthan, India

Abstract

The quantum Ion dependent theory for the mixtures of ionic and covalent crystals, firmly established in the present paper have given us a way to predict definite expressions for temperature variation of refractive index (n). These variation effect will lead to many exciting properties in the field of photo elasticity photo conductivity and solar cell technology etc.

Key words: Refractive Index (n), Ionic and Covalent Crystals, Temperature dependence.

Introduction

The temperature variation of refractive index (n) at constant pressure and constant volume of mixed binary crystals have been a subject of great interest in the field of electronic world.

In the most recent proposal, Ravindra et al. (1981) calculated the temperature derivatives of refractive indices and compared them with the measured values of (dn/dt) and with thoese of Moss for Si, Ge and III-V solids. Both these predictions by Ravindra and Moss gave errors by 1.5:1 but for indium compounds the errors are of the order of 3:1. The calculated values from Moss equation are quire over estimated than observed values. In case of PbS the experimental value of dn/dT is equal to -6×10^{-4} per K while Moss and Ravindra's predictions give -9.8×10^{-4} per K and -2.3×10^{-4} per K respectively which are both not in good agreement. Thus, the validity of Moss and Ravindra's proposals are quite inadequate for all simple and binary complex families.

Thus, in the next section, we will use our own quantum ion dependent dielectric theory to formulate the temperature dependences, which should be applicable to all ionic, covalent and complex binary families simultaneously. International Journal of Engineering & Scientific Research Vol. 4 Issue 10, October 2016, ISSN: 2347-6532 Impact Factor: 5.901 Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Calculations for Temperature variation of Refractive Indices for Mixed Binary Crystals

To study the temperature variation of refractive indices for I-VII, II-VI and III-V binary crystals, we use our ion dependent correlation between refractive index (n) and the average energy gap (E_g) as given by the following equation:

$$n^2 = 1 + CE_g^k \qquad \dots (1)$$

Here, K is different for different family and C is different for different ions.

Thus, differentiation of above equation with respect to temperature at constant pressure we get

$$\left(\frac{dn^2}{dT}\right)_p = CKE_g^{K-1} \left(\frac{dE_g}{dT}\right)_p + E_g^k \left(\frac{dC}{dT}\right)_p$$

Or
$$\left(\frac{dn^2}{dT}\right)_p = K.C \frac{E_g^K}{E_g} \left(\frac{dE_g}{dT}\right)_p + C E_g^k \frac{1}{C} \left(\frac{dC}{dT}\right)_p$$

Or
$$\left(\frac{dn^2}{dT}\right)_p = K \frac{(n^2 - 1)}{E_g} \left(\frac{dE_g}{dT}\right)_p + (n^2 - 1) \frac{1}{C} \left(\frac{dC}{dT}\right)_p$$

Or
$$2\left(\frac{dn}{dT}\right)_{p} = \frac{\left(n^{2}-1\right)}{E_{g}}\left(\frac{dE_{g}}{dT}\right)_{p} + \left(n^{2}-1\right)\frac{1}{C}\left(\frac{dC}{dT}\right)_{p}$$

Or
$$\frac{1}{n} \left(\frac{dn}{dT}\right)_p = \frac{\left(n^2 - 1\right)}{2n^2} \left[\frac{K}{E_g} \left(\frac{dE_g}{dT}\right)_p + \frac{1}{C} \left(\frac{dC}{dT}\right)_p\right] \dots (2)$$

Similarly, we can derive temperature derivative of n at constant volume to get a similar result as

$$\frac{1}{n} \left(\frac{dn}{dT}\right)_{v} = \frac{\left(n^{2} - 1\right)}{2n^{2}} \left[\frac{K}{E_{g}} \left(\frac{dE_{g}}{dT}\right)_{v} + \frac{1}{C} \left(\frac{dC}{dT}\right)_{v}\right] \qquad \dots (3)$$

The calculated values of $\frac{1}{n} \left(\frac{dn}{dT} \right)$ at constant pressure and constant volume for

I-VII family are enlisted in tables 1 and 2 respectively. The calculated values of $\frac{1}{n} \left(\frac{dn}{dT} \right)$ at constant pressure for II-VI and III – V families are enlisted in Table - 3

International Journal of Engineering & Scientific Research

Vol. 4 Issue 10, October 2016,

ISSN: 2347-6532 Impact Factor: 5.901

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Table – 1 : Calculated values of $\frac{1}{n} \left(\frac{dn}{dT} \right)$) at constant pressure for I – VII mixed binary
--	---

Cations Crystals Refractive $1(dE)$ $1(dC)$ $1(dn)$					
Cations	50%-50%	Index (n)	$\frac{1}{E}\left(\frac{dE_g}{dT}\right)$	$rac{1}{C} \left(rac{dC}{dT} ight)_p$	$\frac{1}{n}\left(\frac{dn}{dT}\right)_p$
	5070-5070	macx (ii)	$E_g \left(dT \right)_p$		_
			$X10^{-5} / K$	$X10^{-5} / K$	$X10^{-5} / K$
					Calculated
	LiF-LiCl	1.52	-0.388	+5.92	1.785
Li	LiF-LiBr	1.60	-1.596	+5.92	2.292
	LiCl-LiBr	1.72	-2.977	+5.92	2.944
	NaF-NaCl	1.41	-3.000	+2.20	1.290
	NaF-NaBr	1.47	-5.365	+2.20	2.035
No	NaF-Nal	1.55	-7.728	+2.20	2.899
Na	NaCl-NaBr	1.56	-4.972	+2.20	2.108
	NaCl-Nal	1.64	-6.976	+2.20	2.881
	NaBr-Nal	1.69	-8.124	+2.20	3.355
	KF-KCl	1.41	-2.990	+3.96	1.724
	KF-KBr	1.45	-2.358	+3.96	1.655
V	KF-KI	1.50	-1.600	+3.96	1.540
K	KCl-KBr	1.52	-4.040	+3.96	2.264
	KCl-KI	1.56	-3.212	+3.96	2.116
	KBr-KI	1.60	-2.750	+3.96	2.046
	RbF-RbCl	1.43	-2.232	+2.72	1.263
Rb	RbF-RnBr	1.47	-1.802	+2.72	1.216
	RbF-RbI	1.52	-2.626	+2.72	1.513
	RbCl-RbBr	1.52	-2.588	+2.72	1.502
	RbCl-RbI	1.56	-3.245	+2.72	1.760
	RbBr-RbI	1.60	-2.861	+2.72	1.702

crystals (K = - 1.00)

International Journal of Engineering & Scientific Research

Vol. 4 Issue 10, October 2016,

ISSN: 2347-6532 Impact Factor: 5.901

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Table – 2 : Calculated values of $\frac{1}{n} \left(\frac{dn}{dT} \right)$) at constant volume for I – VII mixed binary
--	---

Cations	Crystals	Refractive	$1\left(\frac{dE_g}{dE_g}\right)$	$\frac{1}{dC}$	1(dn)
	50%-50%	Index (n)	$\overline{E_g} \left(\frac{s}{dT} \right)_V$	$\frac{1}{C}\left(\frac{dC}{dT}\right)_{V}$	$\overline{n}\left(\overline{dT}\right)_{V}$
			$X10^{-5} / K$	$X10^{-5} / K$	$X10^{-5} / K$
	LiF-LiCl	1.52	+0.420	-1.58	-0.566
Li	LiF-LiBr	1.60	+1.581	-1.58	-0.964
	LiCl-LiBr	1.72	+2.881	-1.58	-1.476
	NaF-NaCl	1.41	-0.680	+1.52	+0.546
	NaF-NaBr	1.47	+1.650	+1.52	-0.035
No	NaF-Nal	1.55	+3.520	+1.52	-0.584
Na	NaCl-NaBr	1.56	+0.934	+1.52	+0.173
	NaCl-Nal	1.64	+2.579	+1.52	-0.332
	NaBr-Nal	1.69	+3.763	+1.52	-0.729
К	KF-KCl	1.41	-0.360	+0.44	+0.200
	KF-KBr	1.45	-1.378	+0.44	+0.476
	KF-KI	1.50	-3.200	+0.44	+1.012
	KCl-KBr	1.52	-0.406	+0.44	+0.239
	KCl-KI	1.56	-2.077	+0.44	+0.745
	KBr-KI	1.60	-2.689	+0.44	+0.951
	RbF-RbCl	1.43	-1.029	+1.59	+0.668
Rb	RbF-RnBr	1.47	-1.888	+1.59	+0.935
	RbF-RbI	1.52	-1.871	+1.59	+0.979
	RbCl-RbBr	1.52	-2.218	+1.59	+1.078
	RbCl-RbI	1.56	-2.169	+1.59	+1.109
	RbBr-RbI	1.60	-2.732	+1.59	+1.318

crystals (K = -1.00)

International Journal of Engineering & Scientific Research

Vol. 4 Issue 10, October 2016,

ISSN: 2347-6532 Impact Factor: 5.901

Journal Homepage: http://www.esrjournal.com Email: esrjeditor@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Table – 3 : Calculated values of $\frac{1}{n} \left(\frac{dn}{dT} \right)$ at constant pressure for mixed binary crystals

Family	Crystals	K	Refractive	$1\left(dE_{g}\right)$	1(dC)	1(dn)
	50%-50%		Index (n)	$\overline{E_g}\left(\frac{\sigma}{dT}\right)_p$	$\overline{C}\left(\overline{dT}\right)_p$	$\overline{n}\left(\overline{dT}\right)_{p}$
				$X10^{-5} / K$	$X10^{-5} / K$	$X10^{-5} / K$
		(a)		(b)		
	ZnS-ZnSe	-1.000	2.355	-6.639	2.012	3.547
II-VI	ZnS-ZnTe		2.490	-8.250	2.012	4.300
	ZnSe-ZnTe		2.565	-8.716	2.012	4.549
	GaP-InP	0.652	3.005	-6.987	4.389	3.980
III-V	GaAs-InAs		3.405	-7.536	7.693	5.761
	GaSb-InSb		3.875	-8.743	11.726	8.138

of II – VI and III – V families

(a) Singh R.P. et al. (1986)

(b) Obtained for 50%-50% mixtures of compounds from measured values of individuals (Tsay et al., 1973 and Sarkar et al., 1980)

Analysis of the Result

The temperature dependences of refractive index and electronic dielectric constant play a important roles in the thermal distortion of high power laser beams, transversing various optical elements and windows. This concept was originally initiated by sparks (1971) for pure crystals which can be extended now for mixed crystals. The associated aberration under most conditions in proportional to temperature derivative of refractive index and both the magnitude of (dn/dT) as well as its frequency dependence are important in this direction.

The temperature dependence of optical dielectric constant and refractive index (n) of crystals may lead to the field of optical instrumentation (Smakula, 1962) such as high resolution photographic lenses. This was initially proposed by Smakula (1962) for pure crystals but he could not ultimately get any proper results. Our ion dependent formulation is well applicable to such fields.

We can derive efficient solar cells from the mixed crystals by applying proper amount of heat or vary average energy gap to any required extent.

References

- 1. Antoneik et al., Czech. J. Phys. 6, 209 (1956).
- 2. Moss T.S., Photoconductivity in the elements, Butterworths, London (1952).
- 3. Moss T.S., Phys. Stat. Sol. (b) **131**, 415 (1985).
- 4. Moss T.S., Reports Prog. Phys. 28, 15 (1965).
- 5. Ram Chandran G.N., Proc. Ind. Acad. Sci. A25, 286 (1947).
- 6. Ravindra N.M., Bhardwaj R.P., Kumar K.S. and Srivastava V.K., Infrared Phys. 21, 369 (1981).
- 7. Sarkar, K.K. and Goyal S.C., Phys. Rev. **21**, 879 (1980)
- 8. Singh R.P., Singh P., Sarkar K.K., Infrared Physics 26, 1 (1986)
- 9. Singh R.P., Singh P., Sarkar K.K., Infrared Physics 26, 167 (1986)
- 10. Smakula A., opt. Acta **9**, 205 (1962)
- 11. Sparks M., J. Appl. Phys. 42, 5029 (1971)
- 12. Tsay Y.F., Bendow B. and Mitra S.S., Phys. Rev. **B8**, 2685 (1973)